If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4b^2+4b-9=0
a = 4; b = 4; c = -9;
Δ = b2-4ac
Δ = 42-4·4·(-9)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{10}}{2*4}=\frac{-4-4\sqrt{10}}{8} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{10}}{2*4}=\frac{-4+4\sqrt{10}}{8} $
| 5x+5x=6x | | 6x+8(x-2)=180 | | 5y/8+7/8=-3/8 | | 54x+2=20 | | m/7=12+1.5 | | 67=w-65+3w | | 4+n=10;n=14 | | 4(x-4)=6x-7-2x | | 3(x-2)=7x-9-4x | | 4(2x+7)-4=2x+7 | | 240/x=57 | | 3x-12=18-x | | 3x-17+3x^2=-4 | | 4(2x+7)-4=2x+4 | | 12x-4x(x-1)=2(x-2)+16 | | 5m–2(m–5)=1+3m | | 2x^2+14x-155=0 | | 2x-5x=5x+9 | | 0.5^4-3x=8^2x+1 | | 2x–6=3x–8 | | 8÷x=6÷x | | 8b-3=2b+4 | | -6(9x+5)-3+4x=-408=x | | 9=3b+2 | | 5(2t+1)-8t+4=19 | | 4(2x+3)+3x=10 | | 4(x+2)=4(2x+3)+4x | | -0.2(4x+3)=0.2(5x-3) | | 2x+94=60 | | B=500-30m | | 0.1(q+2)+0.22q=3.72 | | 0.I(q+2)+0.22q=3.72 |